
A write-performance improvement of ZABBIX with NoSQL

databases and HistoryGluon

MIRACLE LINUX CORPORATION∗

February 13, 2013

Abstract

This paper presents our research progress for improving write performance of ZABBIX with a NoSQL

database for storing histories whose write frequency is increased as the number of monitoring targets. The

benchmark results shows that write performance with our proposed method is increased by approximately

three times compared to that with the original.

1 Introduction

Today the number of devices such as servers and network equipment in enterprise data center has been increas-
ing due to advent of new technologies (e.g., cloud computing, PaaS and IaaS, and a framework for running
applications on large cluster such as Hadoop [1]). Monitoring a huge number of devices is becoming more and
more important.

ZABBIX [2] is one of the most popular open source monitoring software and can also be applied for an
enterprise system [3]. As the number of monitoring targets increases, write frequency of histories that are
monitored data such as CPU load, available memory size, free disk space, and so on becomes high. Therefore it
is considered that write performance of histories is one of the significant factors to decide the maximum number
of monitoring targets.

ZABBIX uses one of MySQL [4], PostgreSQL [5], Oracle [6], DB2 [7], and SQLite [8] as a DB (Data Base)
to store both histories and other information such as monitoring items, intervals, trigger conditions, user names
and so on. The all DBs described above are categorized into RDBMS (Relational Data Base Management
System). It generally has an SQL interface and the functions required for SQL statements and has been widely
used for various applications.

Recently a lot of open source products of NoSQL (Not Only SQL) that is a different type of DB have
appeared. Some of them have faster read and/or write performance than RDBMS. We created a software stack
that stores histories on a NoSQL DB instead of an RDBMS with the goal of write-performance improvement.
This paper presents the architecture and the benchmark results.

2 Proposed architecture

Figure 1 shows a proposed software stack. There are two newly added components that are shown in gray
boxes. One is a NoSQL DB and the other is HistoryGluon [9]. The fixed version of ZABBIX 2.0.3 [10] is used
in the proposed software stack.

zabbix server (DBSyncer) stores histories into a NoSQL DB via HistoryGluon that provides high level APIs
to save history. The source code that originally uses SQL statements in zabbix server is replaced by the
source code that calls APIs of HistoryGluon client library. Front-end PHP source code also gets histories via
HistoryGluon PHP extension.

2.1 NoSQL databases

A NoSQL DB is a DB that doesn’t have an SQL Interface. There are many products of it in the open-source
world. Some of them have simple data structure and works faster than RDBMS. In addition, they have a scale
out feature that increases read and/or write performance by adding nodes (computers) to run themself. In this
paper, the benchmark results with NoSQL DBs: HBase[11], Cassandra[12], and Riak[13] are reported. Their
features are briefly summarized in Table 1.

∗The lead author: Kazuhiro Yamato, e-mail: kazuhiro.yamato@miraclelinux.com
1Single Point Of Failure

1



Figure 1: A proposed software stack. A gray box indicates a newly added component.

Table 1: Comparison table of NoSQL DBs used in the benchmark.
HBase Cassandra Riak

Developed by Apache Software Foundation Apache Software Foundation Basho Technologies, Inc.
License Apache License v2 Apache License v2 Apache License v2

Consistency Strict Eventual Eventual
Have SPOF1 Yes No No

Version 0.94.1 1.1.6 1.2.1

2.2 HistoryGluon

HistoryGluon provides functions for storing/getting histories into/from various NoSQL DBs with a simple way
from some programming languages. It has been on public at [9] under the license GPL version 3. We originally
developed it to make it easy to evaluate the combination of ZABBIX and some NoSQL DBs. If there isn’t a
component that plays the role, it is needed to fix zabbix server with respect to each NoSQL DB because NoSQL
DBs don’t have a common interface or an API set as its name suggests. However, now HistoryGluon is not
only for ZABBIX, but also can be used for other applications because the API set has been designed for storing
general histories.

HistoryGluon consists of a server and client libraries as shown in Table 2. The HistoryGluon server is written
in Java. The primary reason is because many NoSQL DBs have high affinity with Java. In addition, it is one
of the reasons that execution speed of a program written in Java is fast.

Figure 2 shows a class diagram related to the storage of histories in the HistoryGluon server. This structure
enables to support multiple NoSQL DBs as a pluggable back-end DB. An interface StorageDriver defines
abstract methods. Some of them are implemented in BasicStorageDriver. Classes that inherits it have
implementation depending on a background NoSQL DB. They has been shortly written with the aid of common
methods in BasicStorageDriver.

HBaseDriver, CassandraDriver, and RiakDriver are the driver to used HBase, Cassandra, and Riak as

Table 2: Components of HistoryGluon.

Component Written in Available from

server Java N/A (stand-alone program)
client library C C and C++
PHP extension C PHP

2



Figure 2: A class diagram related to the storage of histories.

Figure 3: A sequence diagram in case a history with an integer value is stored on Cassandra.

a back-end DB respectively. CassandraDriver inserts histories with ConsistencyLevel.ONE. MemDriver stores
histories only on memory with the Java’s TreeSet class. It does not require any setting and can be used easily.
Time to store and get a history is naturally short. It was developed mainly for a test.

Figure 3 shows a sequence diagram in case a history with an integer value is stored on Cassandra. As you
can see, the current implementation calls functions synchronously. Since addData() is an abstract method
defined in StorageDriver interface, left-hand components (i.e. zabbix server, HistoryGluon client library and
HistoryGluon server) are not aware which NoSQL DB is being used. The used NoSQL DB is specified in a
command line to run HistoryGluon server.

HistoryGluon server can open and keep connections from multiple clients. Because a number of zabbix server
(DBSyncer) typically work in the system, the sequence shown in the figure is possible to be executed concurrently.

2.3 Other components for the benchmark

We added a function to zabbix server to discard histories in DCsync history(). When this function is enabled,
a benchmark result corresponds to the performance in the extreme case that the time to write a history is zero.
The result is informative as a reference.

3



3 Benchmark

3.1 Basic scheme

We use the number of histories written in DBSyncer as an index of the performance. DBSyncer originally
logs the message including such information with the level LOG LEVEL DEBUG. We changed the level to
LOG LEVEL INFORMATION to record it on the log file and added output points of the message (for more
details, see the patch in [14]). Basic benchmark scheme is the following. It is repeated with increasing the
number of monitoring targets. Actually they are automatically performed by the test script [14].

1. Register monitoring targets to zabbix server with ZABBIX APIs.

2. Monitor the target items for Tobs sec.

3. Parse the log file and sum the written counts.

4. Remove the registered targets from zabbix server.

In this benchmark, a lot of histories are generated by registering one target computer on which zabbix agentd is
running many times. A set of monitoring items are based on Template OS Linux. Monitoring interval is set to
Tint sec. As long as the histories are normally saved, the number of written histories N should be approximately

N ≃

Tobs

Tint

. (1)

We performed the benchmark with Tobs = 120 and 1800 sec. and Tint = 5 sec.
As described in Section 1, ZABBIX supports many RDBMS. We use MySQL and PostgreSQL as ordinary

RDBMS, because they are popular open source products and have standard client-server architecture.

3.2 Setup

Figure 4 and 5 show the setup for stand-alone mode and cluster mode respectively. In stand-alone mode, all
components except for zabbix agend are running on one node (node S). In cluster mode, programs of NoSQL
DBs are distributed and executed. In both modes, zabbix server, RDBMS (MySQL or PostgreSQL), and
HistoryGluon server are executed on one node (node S). All nodes have the same specification listed in Table 3.

Figure 4: A setup for stand-alone mode.

3.3 Configurations of NoSQL DB

Default partitioner of Cassandra is RandomPartitioner. It evenly stores data to each node with a hash of the
key. However this disables the range query with a key. Because ZABBIX often uses the range query, we set
the partitioner to ByteOrderedPartitioner. With the partitioner, each node of Cassandra cluster has a range
in which it stores data with a key. The lower boundary is called token. Cassandra provides the way to set the
token of nodes by users. However, this partitioner may cause bias of node in which data is written. In this
benchmark, we prepare three types of tokens. The first gathers all data to the local node (node S) on which

4



Figure 5: A setup for cluster mode.

HistoryGluon is running. The second gathers all data to an extern node (node U). The last evenly distributes
data on each node.

Riak also cannot do the range query with the default storage back-end: riak kv bitcask backend. We change
the storage back-end to riak kv eleveldb backend.

3.4 Configuration files

Configuration files for the benchmark are put in ’benchmark/conf’ directory in [14].

4 Results and Discussion

Figure 6, 7, and 8 show the benchmark results. The horizontal and vertical axis indicate the number of
monitoring targets and written history in Tobs, respectively. A slanted line passing through the origin means
the ideal value when all histories are written without problems.

4.1 Stand-alone mode

In Figures 6 and 7, blue circles, magenta argyles, blue closed boxes, and black closed triangles are measured
points with Cassandra, Riak, HBase, and Mem, respectively. The DB that stores information other than
histories is MySQL or PostgreSQL respectively as shown in the figures. Red triangles and red upside-down
triangles are measured points in the case that histories are also stored in RDBMS (MySQL and PostgreSQL

5



Table 3: Specification of PC and software used in the benchmark.

CPU Intel Core i5-3570K 3.40GHz
Chipset Intel Z77 Express
Memory DDR3 1600MHz 4GB ×4
HDD Seagate ST2000DM001 formatted with EXT4 (No LVM is used)
LAN Realtek RTL8111/8168B PCI Express Gigabit Ethernet controller

Distro. CentOS 6.3 (64bit)
Java OpenJDK 1.7

respectively). Black crosses are measured points in the case of Null Write mode. Hereafter we simply call the
measured points Cassandra, Riak, HBase, Mem, MySQL, PostgreSQL, and Null Write as with the legend in
the figures.

Mem, and Null Write are almost the same and on the ideal line up to where the number of targets is
approximately 22000. The result of Cassandra with MySQL is also the same as those of Mem and Null.
However, the result of Cassandra with PostgresSQL is lower than them.

Riak, MySQL, and PostgreSQL lost touch with the ideal line at the smaller number of monitoring targets
(approximately 6000). That of HBase is remarkably the smallest in the benchmark. There aren’t measured
points of HBase above number of monitoring targets > 3000. In such conditions, we failed to measure the
performance, because HistoryGluon crashed due to OutOfMemoryError of Java VM.

In all results, the number of written histories are almost constant value in the above a certain number of
monitoring targets. We call the value a write-performance hereafter. A write-performance of Cassandra is more
than 3 times of that of MySQL and PostgreSQL. This result implies that the bottleneck of a write-performance
in the original ZABBIX is RDBMS.

In figure 6, the write-performance of Cassandra is very closely to that of Null Write and Mem. This suggests
that the suppression factor in these condition is not performance of Cassandra. Currently the reason has not
been revealed. It may be due to the setup method or an internal structure of zabbix server and zabbix agent.

4.2 Cluster mode

In Figure 8, black circles, blue upside-down triangles, and black triangles represent the measured points with
Cassandra cluster. Hereafter we call them Cassandra (local), Cassandra (sharding), and Cassandra (external),
respectively. They have the different tokens as described in section 3.3.

Cassandra (local) is comparable to the result of Cassandra in stand-alone mode. This is reasonable, because
their data flow are almost the same. A write performance of Cassandra (external) is less than half of that
of Cassandra (local). This may be caused by the simple synchronous architecture shown in Figure 3, which
waits for the reply from an external node. A write performance of Cassandra (sharding) is located between
that of Cassandra (local) and Cassandra (external). Magenta argyles and blue closed boxes represents the
measured points with Riak cluster and HBase cluster respectively. The write-perfomance of Riak was improved
by approximately 1.5 times compared to the stand-alone (Figure 6). However, other results of cluster mode
have not a big difference from those of stand-alone mode with the current architecture and the setting.

5 Future plan

Here we enumerate items to propel this research below. We will keep trying the enhancement of performance
by studying them.

• Understanding the cause of bottleneck in the result with Cassandra in stand-alone mode. If it is solved,
the write-performance could be increased moreover.

• Benchmark of the read-performance. We will evaluate not only throughput but also the response time.

• Addition of supported NoSQL DBs such as MongoDB and the benchmark them.

• Addition of asynchronous HistoryGluon APIs and utilization of batch APIs of NoSQL DBs. These could
improve the write performance in cluster mode.

• Understanding why the result with HBase was too low.

6



Number of monitoring targets

N
um

be
r 

of
 w

rit
te

n 
hi

st
or

ie
s 

in
 1

80
0 

se
c.

0 5000 10000 15000 20000 25000 300000e
+

00
2e

+
06

4e
+

06
6e

+
06

8e
+

06
1e

+
07

RDBMS: MySQL
Cassandra
Mem
Null Write
Riak
MySQL
HBase

Figure 6: A summary of write performance (stand-alone, 1800sec.).

Number of monitoring targets

N
um

be
r 

of
 w

rit
te

n 
hi

st
or

ie
s 

in
 1

80
0 

se
c.

0 5000 10000 15000 20000 25000 300000e
+

00
2e

+
06

4e
+

06
6e

+
06

8e
+

06
1e

+
07

RDBMS: PostgreSQL
Cassandra
Mem
Null Write
Riak
PostgreSQL
HBase

Figure 7: A summary of write performance (stand-alone, 1800sec.).

7



Number of monitoring targets

N
um

be
r 

of
 w

rit
te

n 
hi

st
or

ie
s 

in
 1

80
0 

se
c.

0 5000 10000 15000 20000 25000 300000e
+

00
2e

+
06

4e
+

06
6e

+
06

8e
+

06
1e

+
07

RDBMS: MySQL
Cassandra (local)
Cassandra (sharding)
Riak
Cassandra (external)
HBase

Figure 8: A summary of write performance (cluster, 1800sec.).

6 Summary

Monitoring software that can handle a huge number of devices is needed for these days. We proposed the
method for improving a write-performance of ZABBIX by storing histories that was increased as the number of
devices with a NoSQL DB and HistoryGluon, which was newly developed to become a bridge between NoSQL
DBs and programs written in C such as zabbix server. We evaluated the performance of the proposed method
with NoSQL DBs: HBase, Cassandra, and Riak. The result with Cassandra has been increased approximately
three times compared to original ZABBIX in the stand-alone mode. The result of the cluster with Riak has
been increased approximately 1.5 times compared to that of stand-alone mode.

7 Contact and feedback information

Thank you for reading. You can rate this paper and contact us at [15].

References

[1] http://hadoop.apache.org/

[2] http://www.zabbix.com

[3] http://www.zabbix.com/enterprise_ready.php

[4] http://www.mysql.com/

[5] http://www.postgresql.org/

[6] http://www.oracle.com

[7] http://www-01.ibm.com/software/data/db2/linux-unix-windows/

[8] http://www.sqlite.org/

[9] https://github.com/miraclelinux/HistoryGluon

8

http://hadoop.apache.org/
http://www.zabbix.com
http://www.zabbix.com/enterprise_ready.php
http://www.mysql.com/
http://www.postgresql.org/
http://www.oracle.com
http://www-01.ibm.com/software/data/db2/linux-unix-windows/
http://www.sqlite.org/
https://github.com/miraclelinux/HistoryGluon


[10] https://github.com/miraclelinux/MIRACLE-ZBX-2.0.3-NoSQL

[11] http://hbase.apache.org

[12] http://cassandra.apache.org

[13] http://wiki.basho.com

[14] https://github.com/miraclelinux/zabbix-benchmark

[15] https://docs.google.com/forms/d/1BKroVJkb108CKHKBFfGaV25iE5zfF_R0bD0YSjyuhSw/viewform

9

https://github.com/miraclelinux/MIRACLE-ZBX-2.0.3-NoSQL
http://hbase.apache.org
http://cassandra.apache.org
http://wiki.basho.com
https://github.com/miraclelinux/zabbix-benchmark
https://docs.google.com/forms/d/1BKroVJkb108CKHKBFfGaV25iE5zfF_R0bD0YSjyuhSw/viewform

	Introduction
	Proposed architecture
	NoSQL databases
	HistoryGluon
	Other components for the benchmark

	Benchmark
	Basic scheme
	Setup
	Configurations of NoSQL DB
	Configuration files

	Results and Discussion
	Stand-alone mode
	Cluster mode

	Future plan
	Summary
	Contact and feedback information

