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Abstract

This paper reports on the results of a study to accelerate string tokenization using FPGAs suitable for
both IoT gateways and data center servers. The prototype developed with Xilinx High-Level Synthesis
software runs at 200 MHz and processes up to 32 ASCII characters per clock cycle. It incorporates either
OpenCL or our own framework (Volvox) to transfer data between a host computer and a FPGA board via
a PCI Express interface. Evaluations showed processing with a prototype with Volvox was approximately
10 times faster than with a CPU.

1 Introduction

Projections indicate the number of IoT (Internet of Things) devices will exceed 20.8 billion [1] by 2020. A key
component in the handling of this enormous array of data and devices will be IoT gateways, which will likely
handle certain preprocessing tasks including aggregation, format conversion, and dropping junk data as well as
collecting data from devices and forwarding them to the Internet servers. Despite the devices and traffic IoT
gateways will be expected to handle, it is generally assumed that they will be installed in locations other than
traditional data centers, including locations that impose harsh constraints with respect to space, cooling, and
power consumption. Text strings will account for a portion of this traffic, since many network protocols and
data formats are based on text data like HTTP and JSON. In addition, if IoT devices begin running lightweight
programming languages (e.g., Python and Ruby), which have recently begun running on even small devices,
the communication will likely be text based. Hence, the efficient processing is among the key prerequisites for
a sophisticated IoT gateway.

Data centers will also face a flood of data from IoT devices, generating numerous opportunities for text
processing, including distributed batch processing of collected data (e.g., with Hadoop [2]), syntactic analysis
of natural language, AI (Artificial Intelligence) interfaces, and parsing logs from numerous servers.

FPGAs (Field Programmable Gate Arrays) represent an ideal solution to these issues. According to Intel,
one-third of cloud service nodes will be equipped with FPGAs by 2020 [3]. FPGAs will allow users and
developers to configure circuits tailored to specific purposes. Good FPGA circuit design will improve computing
performance and reduce power consumption [4]. However, general software engineers and operators generally
find it difficult to use FPGA skillfully, since design requires knowledge of digital circuits as well as the specifics
of a host server system, including the system bus and operating systems. In addition, newly developed or
modified applications must include additional processing in order to use FPGAs.

We plan to address these challenges by creating an operating system that can use FPGAs transparently
by drawing on basic libraries like the GNU C Library (glibc) [5]. The advantage of this approach is that it
requires no modification of the application. Additionally, the recent trend toward fusing FPGAs with CPUs
raises the possibility this concept will be valid on both Intel and ARM platforms. Intel recently announced
the completion of its acquisition of Altera Corporation, one of the leaders in FPGA technology [6]. Xilinx, the
other leading company, has already released a SoC (System on Chip) called Zynq that integrates the software
programmability of an ARM-based processor with the hardware programmability of an FPGA [7]. The CEO of
Softbank the parent company of ARM Ltd., has sounded a positive note regarding use of ARM-based processors
for IoT [8].

As the first step in tackling this challenge, we created a prototype of a tokenizer that decomposes strings
into words, among the most basic tasks in text handling. This paper describes the architecture of the prototype
and the results of our evaluations.
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2 Prototype

2.1 Overall design

The prototype consists of a host computer and an FPGA board (listed in Table 1) connected to a PCI Express
interface (Figure 1). The components in the figure are divided into three layers. The bottom layer (gray
background) is hardware with fixed functions. The middle layer (blue background) plays a role in bridging the
bottom and the upper layers and handles many functions commonly used by various applications, including
DMA transfer and interrupt handling. The upper layer (red background) has application-specific features.

Figure 1: Overall design

Section 2.2 discusses the tokenizer kernel 1, which handles the most essential tasks. For the middle layer,
we used two different frameworks, OpenCL and Volvox, shown in 2.3 and 2.4, respectively, and evaluated
performance for both cases. Section 2.5 discusses host applications in the upper layer.

Table 1: FPGA board and related specifications
FPGA board ALPHA DATA ADM-PCIE-7V3 [11]
FPGA device Xilinx Virtex-7 XC7VX690T-2
Maximum lane width ×8
Maximum link speed 8 GT/s
DDR Two 8 GB ECC-SODIMM for memory speeds up to 1333 MT/s

2.2 Tokenizer kernel

The tokenizer kernel calculates pairs of a start and an end position for all words in the input strings for each
line. Table 2 gives the specifications for the current prototype, which processes up to L (see Table 4) in one
run of the kernel. Written in C++ and synthesized in Xilinx Vivado High-Level Synthesis (HLS) 2016.1 [9], the
I/O interface is defined like a function of the C language, as listed in Table 3.

Table 2: Specification for tokenizer prototype
Delimiter Space character

Multibyte character Not supported
Consecutive delimiters Treated as one delimiter
Maximum line length 65535

Figure 2 illustrates how to tokenize the two lines ‘��MIRACLE���LINUX’ and ‘Corporate�color�is�green.’
(� representing a space). The input parameter num lines and total length are, respectively, the number of
lines and the summed size of lines processed at one kernel run. lengths is an array in which the size of each
line is stored. The array size is identical to num lines. The array lines contains all the strings to be processed

1We call the function configured in an FPGA ‘kernel’. Note that this differs from and should not be confused with the Linux

kernel.
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Table 3: Interface of tokenizer kernel
parameter I/O bit width type protocol Elem. in chunk
num lines IN 32 scalar AXI slave (register) N/A
total length IN 32 scalar AXI slave (register) N/A

lines IN 8 array AXI master 32
lengths IN 16 array AXI master 16
markers OUT 32 array AXI master 8
positions OUT 16 array AXI master 16

Table 4: Configuration parameters of tokenizer kernel
Parameter Value Brief description

L 8192 Maximum number of lines the tokenizer can process at once.
WD 256 Data width of AXI master interface.
NS 32 Number of Splitters.
QW

p 64 Length of burst write for positions.

and has no need for padding or code indicating line breaks. The occurrence of ‘\n’ in a line is handled just like
an ordinary character.

The output parameter markers is an array with the size of num lines+1. The element points to the head of
the region containing tokenization results of the corresponding line. The last element points to the next to the
last element of positions. An array positions contains pairs of a start and an end positions of words. The
array size varies depending on input strings and can be calculated as follows with the last element of markers:

Np = Z/Bp (1)

where Np, Z, and Bp are the number of elements in positions, the last value of markers, and the element size
of positions, respectively. Similarly, the number of tokens Nt is given by

Nt = Np/2 (2)

Figure 3 shows a block diagram of the kernel. Since the port for input and output is actually one AXI
master interface with a data width of WD bits, multiple elements in the arrays are read or written at once. We
call this unit a chunk. The number of elements in a chunk is listed in the column ‘Elem. in chunk’ in Table 3.

The reader first reads out all elements of lengths and then gets lines. This approach accesses memory in
sequential order and triggers AXI burst reads. Burst reads and writes are data transfer methods for achieving
higher throughput by transferring multiple data stored at consecutive addresses in a single operation. Burst
transfers are among the most important points for fast data input and output. The dispatcher sends a read
chunk of lines to one of the splitters cyclically. The splitter parses one character (8 bits) per clock cycle, and
its iteration interval is WD/8 clocks 2. By putting in Ns splitters, which is equal to the iteration interval, we can
process in total Ns characters per clock cycle. Since the splitter parses only one of the chunks that forms part of
a line, it cannot calculate the complete positions in the line. It also calculates some variables so that complete
positions can be calculated in the later block along with them. The linearizer cyclically gathers the parsed
results from each splitter and regenerates a single data stream. The unifier calculates complete positions and
markers in combination with the results of the previous processing. The advantage of this architecture is that
the latency (process time) is independent of the distribution of the input line length and generally proportional
to total length.

The calculated positions and markers, respectively, are sent to the positions formatter and the marker
formatter. The blocks create chunks whose size is WD bits from the incoming data elements. Each time QW

p

of the positions are ready, the writer writes them. On the other hand, markers are buffered in the marker
formatter until all positions are written. Since the maximum number of markers is L + 1, temporary storage
poses no problems. This strategy is employed to trigger burst writes of AXI.

We used the AXI master interface with parameters tuned as indicated in Table 5. As described above, the
burst lengths of positions and markers are QW

p and L+1, respectively. Note that burst length here is a value
used in memcpy() or a for statement. It differs from the AWLEN parameter, a parameter for the AXI interface,
and remains at the default value (15). The values in the table were determined heuristically for optimal results.
Without the parameters, it took a longer interval between one burst write of positions and the next one than
would be expected from the Vivado HLS C/RTL co-simulation result.

2More than one clock cycle is required to process chunks consisting of more than 16 words.

3



Figure 2: Example of tokenization. For the sake of visibility, note that the values of markers and positions

are shown with shorter bit width than the actual ones.

Table 5: AXI interface parameters specified explicitly
parameter latency max read burst length

lines 0 32
lengths 0 32
markers 0 default (16)
positions 0 default (16)

The tokenizer kernel is designed to function at 200 MHz, a fixed requirement, provided OpenCL is used with
the ADM-PCIE-7V3 FPGA board. The latency is 179 according to co-simulation if one chunk3 is used as input
and is incremented every Ns byte.

2.3 OpenCL framework

OpenCL, a framework standardized by the Khronos Group [10], allows developers to use various processors,
including CPUs, GPUs, FPGAs, and dedicated accelerators with one API set based on the C language. The API
set is defined both for a host and a device. In addition, SDAccel, the Xilinx OpenCL development environment,
allows FPGA kernels to be written not just in OpenCL C, but in C and C++ with #pragma directives. We
used SDAccel and wrote the tokenizer kernel in C++.

Figure 4 shows an example of data flow when using OpenCL. Since OpenCL defines the interfaces (APIs)
between the boxes named ‘Host application’ and ‘OpenCL framework on Host’, the precise sequence depends
on the library implementation. (Note that the purpose of this figure is merely to clarify how the mechanism
works.)

The numbers in parentheses at the tops of labels indicate the typical order in which they are used. The
labels are placed near the components to which they are related. Although the figure shows data transferred in
one direction through RAM on the FPGA board, the actual way in which data is transferred between a host
and an FPGA board depends on the specific implementation, as mentioned above. Developers need only to
design application-specific items that can be written in OpenCL C (or C/C++), with no need to account for the
details of hardware such as PCI Express or DDR RAM. This is among the biggest benefits of using OpenCL.

3Size is less than or equal to Ns bytes.
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Figure 3: Block diagram of tokenizer kernel

Figure 4: Data flow with Volvox framework

2.4 The Volvox framework

The Volvox framework is software and glue logic for FPGAs that we developed for two reasons: One is that the
API set of OpenCL is designed for various purposes and to run on various platforms, meaning it may not be
the optimal solution for certain purposes. The other is that SDAccel is not yet in the production status (that
is, it is still in beta), and the results may leave room for improvement.

The tokenizer kernel itself can be used for both OpenCL and Volvox frameworks without modification,
although the interface to the upper layer in a host is incompatible with that of OpenCL for reasons related
to maximum performance. One feature of Volvox is that the tokenizer kernel directly reads and writes data
from/to buffers which are mapped in a memory space of an application program, as illustrated in Figure 5. It
never uses the DDR RAM on an FPGA board. Additionally, no data is copied between the Linux kernel and
an application program.

2.4.1 Glue logic in FPGA

Figure 6 shows the glue logic that enables the tokenizer kernel to access the PCI Express interface with integrated
blocks in the FPGA. Except for the tokenizer, all components are Xilinx IPs called LogiCORE, running at 250
MHz with 256 bits of RDATA and WDATA in the AXI interface, which is required to handle PCI Express
traffic (×8 lanes, 8GT/s speed).

AXI Bridge for PCI Express Gen3 forwards read and write operations between AXI and PCI Express. That
is, a burst read (write) operation of the tokenizer on the AXI interfaces triggers a burst read (write) on PCI
Express. This architecture allows the tokenizer to function as a DMA engine for accessing memory on a host.

The interrupt controller is used for the following two purposes.

(1) To convert a level interrupt to an edge interrupt. The tokenizer interrupt pin is automatically synthesized
by Vivado HLS; This cannot be modified by the developer.

(2) To generate an interrupt signal synchronized with the clock for AXI Bridge.

Table 6 lists the FPGA resources used after fitting. In terms of usage, the concurrency (number of splitters) in
the tokenizer kernel can be increased. However, the logical maximum throughput of the kernel already matches
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Figure 5: An example of data flow with the Volvox framework

the maximum PCI Express data transfer rate. Therefore, greater concurrency will not improve performance
significantly.

Figure 6: Volvox glue logic

2.4.2 Software on a host computer

The only Volvox framework component on the host side is a loadable Linux kernel module. This allocates two
sets of two memory regions, each 4 MiB, for the DMA buffers. One region stores data to the FPGA, while the
other stores data from the FPGA. Using two sets of regions enables a host application to prepare input data
for the next run or access previously processed data while an FPGA is working with the other set, thereby
enhancing performance. The Volvox kernel module maps the regions to a host application via a mmap system
call.

The kernel module incorporates a function that wakes up a host application on receiving an interrupt from
the tokenizer. Nevertheless, using the interrupt remains an option. Since the tokenizer kernel provides a
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Table 6: Resources for tokenizer and Volvox glue logic
Component LUT LUTRAM FF BRAM

tokenizer and Volvox 20% 7% 11% 4%

register, including bits to indicate processing status, a host application can poll the register to determine if a
run is complete. The kernel module also incorporates a feature for synchronizing DMA buffers based on the
streaming Linux DMA API [12]. A host application must flush and invalidate cache memory using this function.

2.5 Host applications for evaluation

Table 7 summarizes the six host applications developed for performance evaluations, divided into two groups,
described, respectively, in Section 2.5.1 and 2.5.2.

2.5.1 Host applications for actual performance measurements

The purpose of the first group is to measure actual performance. Application FOa and FVa (a) read an input
file; (b) format content for use by the tokenizer kernel; (c) write to the buffer; and (d) run the kernel in the
FPGA. When the number of lines of the file exceeds L, steps (c) and (d) above are repeated. Application Ca

was developed to determine the time required to do the same thing with a CPU. In contrast to FOa and FVa,
it does tokenization line by line for simple implementation.

These applications measure the time from the end of the preparation of the first input data to the completion
of the run of the tokenizer kernel. To reduce the latency of reading an input file, all strings are once copied at
the same time to the buffer in the application in advance. (Measurement excludes this time.)

2.5.2 Host applications for proof of concept

The purpose of another group is to inspect performance with a function similar to strtok(), a functions from
the C library (glibc). Here, we name the similar function strtok v(). The applications FOs and FVs (Cs)
count how many times strtok v() (strtok()) are called during a set time. As described in Section 1, our
goal is to create an OS that uses FPGA transparently. This is one demonstration of the concept. Note that
the current implementation is not completely transparent to allow use without any modification of the caller
applications.

The tokenizer kernel is assumed to process multiple lines at once. While it can handle a single line, doing so
would be inefficient due to overhead, as discussed in Section 3.4.1. It must access multiple lines to be tokenized
and run tokenizer with them before they are passed to strtok v(). Nonetheless, even with this limitation, it
can (for example) be applied to the batch processing of a flood of logs.

Applications FOs and FVs first obtain positions and markers of multiple lines via of FOa and FVa, re-
spectively. They then fill a NULL terminator into the given string as a parameter for every call of char

*strtok v(char *str). The argument str is a string to be tokenized just like the original strtok. The return
pointer also has the same meaning as the original. The difference from the original strtok is that the delimiter
is fixed and cannot be specified. Application Cs simply calls strtok() with every line. While implementation
of the tokenization engine of Ca is our own, this is a part of the GNU C Library developed by third parties and
available to all.

Table 7: Host applications
Application FOa FVa Ca FOs FVs Cs

Purpose actual performance strtok-like function
Device FPGA FPGA CPU FPGA FPGA CPU
Framework OpenCL Volvox N/A OpenCL Volvox N/A

3 Evaluation

3.1 Host machine

Table 8 gives the specifications for the host machine used in the evaluation.
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Table 8: Host machine specifications
CPU Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz
RAM 8 GB ×4
OS CentOS 6.8 (x86 64)
Maximum payload size on PCIe 128

3.2 Input data

For input data, we used nine sizes from 10 to 109 bytes of input data consisting of English words. Table 9 lists
the number of words and lines for the various inputs. Figures 7 and 8 show the distribution of word lengths and
lengths of consecutive separators. The most common word length is 3; 90% and 99% of the words are smaller
than 9 and 13 characters, respectively.

The input data size depends on the combination of input words and naturally differs from each run, even if
the number of lines is the same. When the number of lines is at the maximum (i.e., L), the data size is roughly
several hundred kilobytes.

Table 9: Numbers of words and lines in input data
size (Bytes) 10 102 103 104 105 106 107 108 109

words 2 18 154 1579 17194 171422 1743974 17237031 172432363
lines 1 3 43 247 1831 17390 194936 1988957 19911073
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Figure 7: Distribution of word lengths in input data.

3.3 Applications

We used the applications described in 2.5 in polling mode to achieve the maximum performance. Using the
interrupt added a latency of approximately 5 to 10 µs to each run of the tokenizer kernel.

The process time is measured with clock gettime(CLOCK MONOTONIC) placed in the application. The func-
tion is called twice per measurement. The latency of the function itself is roughly 50 nanoseconds according to
this report [13] and can be regarded as negligible.

3.4 Results and Discussion

3.4.1 Actual performance

Figure 9 shows the process time T for input data size A. Black, blue, and red markers represent measured
results with the applications FOa, Ca, and FVa. The time for Ca (TCa

) is the shortest where A . 103; the time
for FVa (TFVa

) is smaller than that of Ca where A & 104. The ratio TCa
/TFVa

and the throughput of FVa, the
data size processed per second, are approximately 10 and 4.13× 109 B/s, respectively, where A & 106.

The process time for Ca is roughly proportional4 to the input data size, while that of FVa is almost constant
and approximately 7 µs where A . 103. We examined a breakdown of the time at A = 10. FVa has three
subprocesses, as shown as below.

(1) Writing input data to DMA buffer and setup registers of tokenizer

(2) Synchronization of DMA buffer

(3) Run of tokenizer kernel

4Nonlinearity around small input data size is considered due to the latency of clock gettime(), as mentioned in 3.3.
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Figure 8: The distribution of the length of consecutive separators in the input data.

The times were approximately 1, 4, and 2 µs, respectively. While the time for subprocesses (1) and (3) increased
with input size, that of (2) remained virtually fixed.

The time for (3) implies that the actual minimum latency of a tokenizer is about 400, since the clock
frequency is 200 MHz, although the design (C/RTL co-simulation) value is 179, as described in Section 2.2.
The difference is due to the latency associated with fetching data from host memory. Figure 10 shows some
signals of the AXI interface of a tokenizer obtained with ILA (Integrated Logic Analyzer) [14], a logic analyzer
for the actual signals inside an FPGA. The interval between the first rise of ARVALID (start of the read request)
and the corresponding rise of RVALID (arrival of the requested data) is about 110 clock cycles. Because the
tokenizer performs two burst reads for lengths and lines, a double latency is added to the value expected
from design. Using a single array containing both lengths and lines will reduce latency, if to the detriment of
readability and maintainability.

The results for FOa feature wide variations in process times around 10−3 . T . 100 where A < 107 and
the average time is 104 and 105 times larger than that of FVa and Ca where A = 10. The reason for this is
unknown. The root cause is hard to identify because the OpenCL implementation is proprietary and closed.
However, these can be ignored when processing large strings (A > 108).
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Figure 9: Process time vs. input data size. The markers show the average time. The error bars represent the
interval that includes 90 % of the results.

3.4.2 Call count of strtok-like functions

Figure 11 shows the measured call count in 1 second. The overall result is consistent with that of actual
performance. The counts ratio of FVs to Cs is approximately 7, which is smaller than 10, the ratio of the actual
performance (TCa

/TFVa
) discussed in the previous section. This is believed to the increase in CPU processing

for calling strtok v() and filling NULL terminators.
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Figure 10: AXI interface signals of a tokenizer when 10 bytes of a string are tokenized.

In general, more processing is required for tokenized words that involve conversion to number type, capital-
ization, or creation of new strings with the words. Since these can be done by a CPU while the tokenizer kernel
is handling processing for the next lines, it would appear that processing of tokenization imposes vanishingly
small CPU loads. In any case, the results show the concept is viable and valid.

CPU

FPGA w/ OpenCL

FPGA w/ Volvox

 0  5x108  1x109

The count of calls per 1 second
 

Figure 11: Comparison of call count of strtok() and the corresponding function strtok v().

4 Summary

This paper reports on a study involving tokenizing strings with FPGAs for IoT equipment, whose numbers are
expected to grow dramatically. The prototype kernel developed using a Xilinx High-Level synthesis compiler
runs at 200 MHz and processes up to 32 ASCII characters per clock cycle. The results showed that throughput
with a prototype created with Volvox (a framework we developed for our own purposes) and carefully tuned
parameters tuned especially for burst transfers was 10 times faster that with a CPU. Our goal is to create an OS
that utilizes FPGAs as described in Section 1. Hence, we plan to implement other functions for text processing
and run the combined functions on an FPGA.

We are grateful to Xilinx Corp. for permitting to use the SDAccel, OpenCL development environment,
which is currently at the beta stage. While our experience with OpenCL included some unaccountable results,
we intend to do more work to help clarify these issues.
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